
Reading concordances with algorithms
CL 2025 Workshop | 29 June 2025

Reading Concordances in the 21st Century (RC21) project team
Nathan Dykes • Stephanie Evert • Michaela Mahlberg • Alexander Piperski

Workshop overview

I. Concordance reading
II. Strategies for organising concordances
III. Hands-on: traditional concordancers

IV. Reading concordances with algorithms
V. Hands-on: FlexiConc
VI. Summary / outlook: Jupyter notebooks

29 June 2025 | © RC21 Team Reading concordances with algorithms 2

Orientation

What we have learned so far …
• Reading concordances with the help of software tools
• How to identify recurrent patterns and interpret them
• Strategies for organising concordance lines

What we're going to look at now …
•What further algorithms could be useful?
•Which software tools do we need to apply these algorithms?
• How can we document the concordance reading process?

Reading concordances with algorithms 329 June 2025 | © RC21 Team

Concordance reading strategies

Reading concordances with algorithms 4

Ordering
Sorting / Ranking

Grouping
Partitioning / Clustering

Selecting

29 June 2025 | © RC21 Team

From strategies to algorithms

1. Selecting
• “zoom in” on a subset of the concordance lines
• either focus on specific pattern or discard unwanted lines

2. Ordering
• change sequential ordering of concordance lines in the display
• may want to combine multiple ordering criteria to break ties

3. Grouping
• form groups of related concordance lines
• requires structured kwic display in UI

58 May 2025 | © CC-BY-SA Reading concordances with FlexiConc

From strategies to algorithms

1. Selecting
• “zoom in” on a subset of the concordance lines
• either focus on specific pattern or discard unwanted lines

2. Ordering
a) Sorting: reorder lines based on pairwise comparison
b) Ranking: reorder lines based on preference score
• combine multiple Sorting and Ranking algorithms to break ties

3. Grouping
• form groups of related concordance lines
• requires structured kwic display in UI

68 May 2025 | © CC-BY-SA Reading concordances with FlexiConc

From strategies to algorithms

1. Selecting
• “zoom in” on a subset of the concordance lines
• either focus on specific pattern or discard unwanted lines

2. Ordering
a) Sorting: reorder lines based on pairwise comparison
b) Ranking: reorder lines based on preference score
• combine multiple Sorting and Ranking algorithms to break ties

3. Grouping
a) Partitioning: groups based on common property
b) Clustering: (nested) groups based on pairwise similarity
• requires structured kwic display in UI

78 May 2025 | © CC-BY-SA Reading concordances with FlexiConc

Combining algorithms

1. Selecting
• “zoom in” on a subset of the concordance lines
• either focus on specific pattern or discard unwanted lines

2. Ordering
a) Sorting: reorder lines based on pairwise comparison
b) Ranking: reorder lines based on preference score
• combine multiple Sorting and Ranking algorithms to break ties

3. Grouping
a) Partitioning: groups based on common property
b) Clustering: (nested) groups based on pairwise similarity
• requires structured kwic display in UI

subset
arrangem

ent

88 May 2025 | © CC-BY-SA Reading concordances with FlexiConc

The analysis tree

Our model of concordance reading: analysis tree
• Selecting creates branches that “zoom in” on a

subset of lines ➞ subset node
• investigate different patterns with each branch
• history of operations ➞ hierarchical tree structure

• Ordering and Grouping algorithms change how
this subset is displayed ➞ arrangement node
• different arrangements are siblings in the tree
• default arrangement: original corpus order

• Each node corresponds to a concordance view
98 May 2025 | © CC-BY-SA Reading concordances with FlexiConc

Query result (4031)
▸ sort: random
▸ select: within suspension (276)

• sort: right context
• sort: left context
• partition: by POS tag @ L1,

sort: left context
▸ select: set [PRP$] (211)

• sort: by L1
• sort: by L1,

sort: right context 🎔

arrangement
node

root node

subset node

si
bl

in
gs

subset

bookmarkpath from
root node

Combining algorithms

• Subset operations can be combined sequentially or nested
• consecutively narrow down on smaller subsets

• Arrangement operations form alternative views of a subset
• consequence: can't “stack” multiple arrangements
• combine sequence of Ordering algorithms as tie-breakers
• multiple Grouping algorithms cannot (or should not) be combined

• Arrangement node = ≤ 1 Grouping + sequence of Ordering algo's
• Grouping determines main structure, Ordering applies within groups

8 May 2025 | © CC-BY-SA Reading concordances with FlexiConc 10

Strategy 1: Selecting

Selecting = add Boolean variable to lines
• keep concordance line if value is True
• exclude selected lines by logical negation of variable (all algorithms)

Examples
• selection based on metadata categories or numerical ranges
• select random subset (reproducible, stratified, …)
• KWIC filter (lines containing certain words, lemmas, POS tags, …)
•manual selection of individual concordance lines

8 May 2025 | © CC-BY-SA Reading concordances with FlexiConc 11

Strategy 2: Sorting [Ordering]

Sorting = add integer variable with sort keys
• pairwise comparison of lines (A < B, A = B, A > B)
• resulting sort order ➞ integers as surrogate keys (A < B, A = B, A > B)
• ties (A = B) can be broken by additional Sorting or Ranking algorithms

Examples
• sort alphabetically by left or right context
• sort by POS tag of first (L1) or second (L2) token before node
• sort by numerical (e.g. year) or categorical (e.g. author) metadata
• random shuffling (reproducible)

8 May 2025 | © CC-BY-SA Reading concordances with FlexiConc 12

Aside: Context trees & KWIC patterns

19 March 2025 | © CC-BY-SA Mathematical and algorithmic foundations of concordance reading 13

Where are the graphs?

! Hierarchically nested lists are useful for
summarising sorted concordances

! More advanced statistical abstractions no
longer lead to hierarchical structures

• in particular, collocational and two-sided n-grams

! Graphs may be useful for visualisation

• may or may not indicate overlap between items

33

Where are the graphs?

34

amount

o!

o"cially

on

only

or

of

obtains

the

they

time

tiredness

allocated

and

any

e!ort

energy

a

o!er

the

Wow! I managed to give a talk
without a single equation!!

35

Association
& Language

Stefan Evert

What is
association?

Applications

Cooccurrences

Randomness
assumption

Measures of
association

The best AM

The best AM:
theoretical

The best AM:
intuitive

The best AM:
empirical

Developing new
AMs

Conclusion &
outlook

Term clustering and dispersion

� term clustering � cooccurrences are not distributed
homogeneously across the corpus

� divide corpus into K parts of equal size

� dispersion d of a word pair =
number of parts in which it appears

� d is smaller than expected � underdispersed pair
� significance of underdispersion is computed from

Pr(d |m) =
�
N
m

⇥�1�K
d

⇥ d⇤

j=1

(�1)d�j
�
d
j

⇥�
S · j
m

⇥

for a word pair with frequency O =m and dispersion d
(Evert 2004b, Lemma A.1)Thank you!

too, the user set up the visualization so that the default view would
show the number of times Mr. Clinton had said “I don’t know,” “I
don’t remember,” “I don’t think,” etc (Fig 6). In short, both
visualizations gave a clear portrait of evasive testimony.

Given that these scandals focused on politicians at opposite ends
of the political spectrum, the visualizations take on an evident spin,
with even the act of their creation suggesting political affiliations and
beliefs. This sort of contribution to “counter” someone else’s
creation on Many Eyes indicates that users are integrating these tools
in their communicative practices. Far from being dispassionate
representations of data, the two “I don’t recall” word trees are part of
a political conversation, a dialog happening through visualization.

The ability to visualize political transcripts has resonated with our
user base. Since the word tree was launched during the preparation
for the 2008 U.S. presidential election, users frequently created word
trees of political speeches, debates among candidates, and media
coverage of the election.

Emotionally charged transcripts such as congressional hearings
and political speeches are not the only kind of transcripts being
visualized on Many Eyes. Even communities that are traditionally
immersed in numerical data, such as financial analysts and investors,
have started to explore the possibilities of using word trees to
visualize transcripts. Earlier this year Seeking Alpha, a well-known
online column of stock market opinion and analysis, embedded both
a word tree and a tag cloud of the transcript of an earnings
conference call on its site and invited readers comment on their
value.

The post quickly generated a number of comments, not all of
them in approval of the experiment. Some felt that the word tree was
more helpful than the tag cloud because it kept the structure of the
text, while others mentioned that it was easier not to use
visualization at all:

Just give us the text, we know how to find (Ctrl+f)

As with the Blogos author, a common request was for the ability

to click on an item in the visualization and see the places in the raw
transcript where that item appears.

5.2 Visualizing the written word
The word tree was designed to handle texts of up to a million

tokens, and to demonstrate this we created a visualization of the
King James Bible, which contains 1,007,116 words and punctuation
marks. Once the visualization was posted on the site, it was quickly
picked up by a group of users interested in religious texts. The
reaction was positive; this comment, unusual for visualizations in
general, typified the response:

This is a new tool to teach the Bible's truth. God bless you.

Other users promptly explored various entryways into the text,

looking for expressions such as “days of thy,” “my love,” and “love
the lord” (Figure 9). As previously noted [13], visualizations of
religious data have been a regular occurrence in Many Eyes since the
site was launched. Perhaps it is not surprising that this community
would be excited to experiment with the analytical possibilities of
the word tree.

Users have also created numerous word trees of literary works,
musical lyrics, and academic papers. An interesting trend is the
visualization of online social activity. Some users have started
visualizing collections of Twitter posts, blog posts, and newsgroup
discussions. It seems that, like tag clouds, word trees might be
helpful in giving people a quick sense of distributed activity online.

5.3 Visualizing structure
Although the word tree was designed to analyze unstructured

text, it is based on a visualization of abstract tree structures. Users
quickly caught on to the possibility of visualizing structured data and
started specially formatting data in ways that would induce the word
tree to show tree-structured information.

One person uploaded a data set of Greek nominal suffixes used in
the New Testament with full nominal morphology. Because this data
set is not a regular text passage but rather a list of words spaced out
into individual letters, the word tree looks cryptic (see Fig. 7). If, for
example, a user does a search for, NPM (nominative, plural,
masculine words), they will see the suffix tree is dominated by –OI
and –ONTES. This arrangement shows that the large majority of
nominative, plural, masculine words in Greek end in -OI or -ONTES.

Another user created a data set to show the different pathways to
the U.S. Presidency. The data set lists the names of 19 American
presidents and the sequence of titles held by each one of them (Fig.

Fig 5: Alberto Gonzales’ testimony in 2007.

Fig 6: Bill Clinton’s testimony in 1998.

Fig 7. Data set and word tree of Greek nominal suffixes in the
Bible. Here, “npm” refers to nominative, plural, masculine nouns.

1225WATTENBERG AND VIÉGAS: THE WORD TREE, AN INTERACTIVE VISUAL CONCORDANCE

Authorized licensed use limited to: Universitatsbibliothek Erlangen Nurnberg. Downloaded on March 19,2025 at 10:46:38 UTC from IEEE Xplore. Restrictions apply.

The Word Tree
(Wattenberg & Viégas, 2008)

(Evert, ICAME 2007)

➞ sorting algorithm for
concordance reading
(Anthony 2022)

… but 3 different versions

Strategy 3: Ranking [Ordering]

Ranking = add floating-point variable to lines
• values = preference score assigned to each line
• decreasing order: lines with highest scores shown at top
• ties can occur e.g. if scores happen to be integer values

Examples
• rank by readability, GDEX algorithm, or fit to selected CEFR level
• rank by frequency of the node string
• rank by similarity to query (for fuzzy search)
• rank by number of significant collocates of the node in context, or

by number of user-specified keywords (KWIC grouper)
8 May 2025 | © CC-BY-SA Reading concordances with FlexiConc 14

Strategy 4: Partitioning [Grouping]

Partitioning = add partition № to each line
• each line assigned to exactly one partition,

based on a property of the concordance line (not on comparisons)
• also provide ordered list of partitions with display labels, etc.

Examples
• frequency breakdown of node strings
• partition by POS tag of first (L1) or second (L2) token before node
• partition by categorical metadata (variety, genre, speaker info, …)
• partition by lemma trigram R1+R2+R3 (similar to KWIC patterns)

8 May 2025 | © CC-BY-SA Reading concordances with FlexiConc 15

Strategy 5: Clustering [Grouping]

Clustering = add ordered tree over lines
• based on pairwise similarities of concordance lines
• hierarchical clustering ➞ deep tree, flat clustering ➞ single-level tree
• tree describes both nesting and preference order of clusters

Examples
• clustering based on lexical similarity (shared words), semantic

similarity (sentence/word embeddings), or syntactic similarity
• clustering based on multiple metadata features ➞ similarity score
• all clusterings: either flat or hierarchical, with different algorithms
• context tree (on POS tags, lemmas, semantic tags, …)

8 May 2025 | © CC-BY-SA Reading concordances with FlexiConc 16

Research documentation

• Analysis tree as research documentation
• concordance view uniquely determined by path from root node
• bookmarked nodes = basis for interpretation & discussion

• Exact reproduction with identical concordance data
• readers can reproduce published results completely
• but also explore further concordance views

• Save / load analysis tree ➞ continue concordance reading later
• Analysis tree as template for concordance organisation
• “replay” tree on a new concordance (possibly from different corpus)
• interactive manual selection has to be omitted (➞ not meaningful)

8 May 2025 | © CC-BY-SA Reading concordances with FlexiConc 17

FlexiConc

8 May 2025 | © CC-BY-SA Reading concordances with FlexiConc 18

FlexiConc
Python library

corpus query
& indexing

host app

CLiC
CandyConc

others?
standalone?

https://pypi.org/project/FlexiConc/

FlexiConc

8 May 2025 | © CC-BY-SA Reading concordances with FlexiConc 19

FlexiConc
Python library

Sketch Engine,
KorAP, CLIC,
CWB

Jupyter
notebook

https://pypi.org/project/FlexiConc/

References

20

Anthony, L. (2022). What can corpus software do? In O’Keeffe, A. and McCarthy, M. J., editors,
The Routledge Handbook of Corpus Linguistics, chapter 9. Routledge, London, 2nd edition

Wattenberg, M. and Viégas, F. B. (2008). The word tree, an interactive visual concordance.
IEEE Transactions on Visualization and Computer Graphics, 14(6):1221–1228.

Reading concordances with algorithms29 June 2025 | © RC21 Team

29 June 2025 | © RC21 Team 21

Appendix

DNOV-CWBCorpus "eyes" %cQuery

Analysis Tree Partition / Cluster ▼

⨁

Make selection ▼ 🎔 Bookmark

images do not represent actual gameplay

Welcome to

CandyConc

DNOV-CWBCorpus "eyes" %cQuery

Analysis Tree

Query result (4031)

Partition / Cluster ▼

⨁

Make selection ▼ 🎔 Bookmark

root node

images do not represent actual gameplay

DNOV-CWBCorpus "eyes" %cQuery

Analysis Tree

Query result (4031)
• sort: random

Partition / Cluster ▼

Make selection ▼

random ❎Sort ⨁

🎔 Bookmark

images do not represent actual gameplay

arrangement node

root node

DNOV-CWBCorpus "eyes" %cQuery

Analysis Tree

Query result (4031)
▸ sort: random

• select: within suspension (276)

Partition / Cluster ▼

Make selection ▼

random ❎Sort ⨁

🎔 Bookmark

images do not represent actual gameplay

arrangement node

root node

subset node

DNOV-CWBCorpus "eyes" %cQuery

Analysis Tree

Query result (4031)
▸ sort: random
▸ select: within suspension (276)

• sort: right context

Partition / Cluster ▼

Make selection ▼

by right context ❎Sort ⨁

🎔 Bookmark

images do not represent actual gameplay

arrangement node

root node

subset node

DNOV-CWBCorpus "eyes" %cQuery

Analysis Tree

Query result (4031)
▸ sort: random
▸ select: within suspension (276)

• sort: right context
• sort: left context

Partition / Cluster ▼

Make selection ▼

by left context ❎Sort ⨁

🎔 Bookmark

images do not represent actual gameplay

arrangement node

root node

subset node

si
bl

in
gs

DNOV-CWBCorpus "eyes" %cQuery

Analysis Tree

Query result (4031)
▸ sort: random
▸ select: within suspension (276)

• sort: right context
• sort: left context
• partition: by POS tag @ L1,

sort: left context

partition by POS tag of token L1Partition / Cluster ▼

Make selection ▼

by left context ❎Sort ⨁

🎔 Bookmark

images do not represent actual gameplay

arrangement node

root node

subset node

si
bl

in
gs

DNOV-CWBCorpus "eyes" %cQuery

Analysis Tree

Query result (4031)
▸ sort: random
▸ select: within suspension (276)

• sort: right context
• sort: left context
• partition: by POS tag @ L1,

sort: left context
▸ select: set [PRP$] (211)

Partition / Cluster ▼

Make selection ▼

by left context ❎Sort ⨁

🎔 Bookmark

images do not represent actual gameplay

arrangement node

root node

subset node

si
bl

in
gs

subset

DNOV-CWBCorpus "eyes" %cQuery

Analysis Tree

Query result (4031)
▸ sort: random
▸ select: within suspension (276)

• sort: right context
• sort: left context
• partition: by POS tag @ L1,

sort: left context
▸ select: set [PRP$] (211)

• sort: by L1

Partition / Cluster ▼

Make selection ▼

⨁by L1 ❎Sort

🎔 Bookmark

images do not represent actual gameplay

arrangement node

root node

subset node

si
bl

in
gs

subset

DNOV-CWBCorpus "eyes" %cQuery

Analysis Tree

Query result (4031)
▸ sort: random
▸ select: within suspension (276)

• sort: right context
• sort: left context
• partition: by POS tag @ L1,

sort: left context
▸ select: set [PRP$] (211)

• sort: by L1
• sort: by L1,

sort: right context

Partition / Cluster ▼

Make selection ▼

by L1 ❎Sort ⨁by right context ❎Sort

🎔 Bookmark

images do not represent actual gameplay

arrangement node

root node

subset node

si
bl

in
gs

subset

DNOV-CWBCorpus "eyes" %cQuery

Analysis Tree

Query result (4031)
▸ sort: random
▸ select: within suspension (276)

• sort: right context
• sort: left context
• partition: by POS tag @ L1,

sort: left context
▸ select: set [PRP$] (211)

• sort: by L1
• sort: by L1,

sort: right context 🎔

Partition / Cluster ▼

Make selection ▼

by L1 ❎Sort ⨁by right context ❎Sort

🎔 Bookmark

images do not represent actual gameplay

arrangement node

root node

subset node

si
bl

in
gs

subset

bookmarkpath from
root node

DNOV-CWBCorpus "eyes" %cQuery

Analysis Tree

Query result (4031)
▸ sort: random
▸ select: within suspension (276)

• sort: right context
• sort: left context
• partition: by POS tag @ L1,

sort: left context
▸ select: set [PRP$] (211)

• sort: by L1
• sort: by L1,

sort: right context 🎔

Partition / Cluster ▼

Make selection ▼

by L1 ❎Sort ⨁by right context ❎Sort

🎔 Bookmark

images do not represent actual gameplay

arrangement node

root node

subset node

si
bl

in
gs

subset

bookmarkpath from
root node

