
 Page 1 of 7

The handout was created by the “Reading Concordances in the 21st Century” research project funded by the Arts and Humanities Research Council (AHRC) (grant
references: AH/X002047/1 & AH/X002047/2) and the Deutsche Forschungsgemeinschaft (DFG) (grant reference: 508235423).
This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 © 2025 Nathan Dykes, Stephanie Evert, Michaela Mahlberg, Alexander Piperski

FlexiConc in CLiC: Basics

This handout illustrates some basic steps of using FlexiConc in CLiC. The
examples we chose for illustration deal with patterns of body part nouns
in nineteenth century fiction. Our focus is on the functionalities of
FlexiConc. We’ll provide further references that can support you with
the textual analysis.

To cite this handout:

Nathan Dykes, Stephanie Evert, Michaela Mahlberg, Alexander Piperski (2025). FlexiConc in
CLiC: Basics

FlexiConc is a flexible Python library for concordance analysis. It enables researchers to study
concordances through customisable algorithms and to make their analysis reproducible.

Key features of FlexiConc include:

§ Flexible algorithms for sorting, ranking, partitioning and clustering concordance lines

§ Modular and adjustable analysis workflows

§ Analysis tree that tracks all algorithms

§ Integration with existing corpus tools is possible

How to get FlexiConC

§ PyPI Package: https://pypi.org/project/FlexiConc/

§ Documentation and Guides: https://fau-klue.github.io/flexiconc-docs/

CLiC (Mahlberg et al. 2020a) is a web app designed as an accessible tool that does not require users to
have expert computational knowledge. CLiC aims to put the engagement with the text at the centre. It
mainly contains works by nineteenth-century authors. CLiC’s functionalities are specifically designed for
the study of narrative fiction. CLiC is the first web application to implement a FlexiConc integration.

 https://clic-fiction.com/

 Page 2 of 7

The handout was created by the “Reading Concordances in the 21st Century” research project funded by the Arts and Humanities Research Council (AHRC) (grant
references: AH/X002047/1 & AH/X002047/2) and the Deutsche Forschungsgemeinschaft (DFG) (grant reference: 508235423).
This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 © 2025 Nathan Dykes, Stephanie Evert, Michaela Mahlberg, Alexander Piperski

Activity 1: running a concordance in FlexiConc

The concordance search is the basis for all subsequent steps. You will search for eyes in long
suspensions, that is, the subset of the CLiC texts that only include words appearing in
sections of the text that can be described as narrator comments or interruptions of
character speech. See the Appendix for more detail on subsets in CLiC.

Activity 2 will be based on this initial concordance. So remember the subset has an effect on
the results, for details how to analyse body language patterns and their textual functions
see Mahlberg et al. (2020b).

1. To use FlexiConc in CLiC, simply select the FlexiConc tab on the right of the page.
2. Next choose a corpus (DNov, i.e. Dickens’s novels), a subset (long suspensions), and

a search term (eyes). The search term is what we call the ‘node’ when we see the
concordance display.

3. Once you made these choices and hit return, click the confirmation button to start
searching the corpus.

4. You will see the resulting concordance in the main window. At the top of the window,
you see information on the number of occurrences of the search term: there are 277
instances of eyes in suspensions. You see pages with 50 examples per page.

 Page 3 of 7

The handout was created by the “Reading Concordances in the 21st Century” research project funded by the Arts and Humanities Research Council (AHRC) (grant
references: AH/X002047/1 & AH/X002047/2) and the Deutsche Forschungsgemeinschaft (DFG) (grant reference: 508235423).
This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 © 2025 Nathan Dykes, Stephanie Evert, Michaela Mahlberg, Alexander Piperski

Activity 2: Adding an algorithm – Sort by Token-Level Attribute
Often, an initial step in the analysis of concordance lines is to sort the lines, for instance,
alphabetically on the first word to the left of the node. In FlexiConc, this algorithm is
captured by ‘Sort by Token-Level Attribute’.

1. Click on ‘Add algorithm’, then you see drop-down where you can choose the ‘Sort by
Token-Level Attribute’.

2. Choose the token offset: in the settings for this algorithm, the token offset specifies
the position relative to the node, where negative values count ‘downwards’ from the
left of the node term (-1, -2, …), and positive values count ‘upwards’ (1,2, …). So L1 is
-1.

3. In the resulting concordance display, the word that were used for sorting are
highlighted. The concordance sample below shows all words on the first position to
the left of eyes that start with the letters a, b, and c.

 Page 4 of 7

The handout was created by the “Reading Concordances in the 21st Century” research project funded by the Arts and Humanities Research Council (AHRC) (grant
references: AH/X002047/1 & AH/X002047/2) and the Deutsche Forschungsgemeinschaft (DFG) (grant reference: 508235423).
This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 © 2025 Nathan Dykes, Stephanie Evert, Michaela Mahlberg, Alexander Piperski

Activity 3: Adding an algorithm – KWIC Grouper Ranker
In FlexiConc it is possible to choose one algorithm at a time, or a sequence of algorithm. In
this activity, we stick with ‘one algorithm at a time’. The algorithm we’ll try out now is the
KWIC Grouper Ranker, which follows the idea of the KWICGrouper in CLiC that is based on
O’Donnell (2008).

As we always need to start from a concordance in FlexiConc, begin afresh with Activity 1.
Instead of doing what you did in Activity 2, now follow the following steps:

1. Choose KWIC Grouper Ranker from the drop-down of the options for ‘Add algorithm’.
2. In the setting for the KWIC Grouper Ranker include his, her, fixing as the list of

terms to search for in the concordance lines.
3. Choose -5 as lower bound and 2 as upper bound, i.e. the algorithm looks for the

words in your in in the 3 words on the left of your node eyes and in the 2 words on
the right. In standard CLiC, you would make this choice with the slider.

4. The concordance display now shows those lines at the top that have the highest
number of matches for the list of search terms.

 Page 5 of 7

The handout was created by the “Reading Concordances in the 21st Century” research project funded by the Arts and Humanities Research Council (AHRC) (grant
references: AH/X002047/1 & AH/X002047/2) and the Deutsche Forschungsgemeinschaft (DFG) (grant reference: 508235423).
This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 © 2025 Nathan Dykes, Stephanie Evert, Michaela Mahlberg, Alexander Piperski

Activity 4: Combining algorithms
In this activity we want to first apply the ‘Sort by Token Level Attribute’ algorithm to sort on
the first word to the left of node. Then we want to KWICGroup the results. We’ll do this in
the following way. As before, begin with the running the concordance (Activity 1).

1. Add the algorithm ‘Sort by Token Level Attribute’ (as in Activity 2)
2. Then add another algorithm, this time KWIC Grouper Ranker (as in Activity 3)
3. Think about what the implications will be for the concordance display?

The screenshot below shows how the lines for her eyes are now grouped and
ranked, whereas there is nothing to group and rank for glistening eyes.

4. As you keep adding algorithms (or also annotations), the analysis tree can help you
keep track of what you’ve been doing. If you click the tree symbol, you will get a
summary of what you have been doing up to this point.

 Page 6 of 7

The handout was created by the “Reading Concordances in the 21st Century” research project funded by the Arts and Humanities Research Council (AHRC) (grant
references: AH/X002047/1 & AH/X002047/2) and the Deutsche Forschungsgemeinschaft (DFG) (grant reference: 508235423).
This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 © 2025 Nathan Dykes, Stephanie Evert, Michaela Mahlberg, Alexander Piperski

Activity 5: The analysis tree - saving and sharing your research
Why is an analysis tree useful?

1) An analysis can result in a large number of branches and algorithms. To gain an overview
of these, you can look at the analysis tree. It provides an overview of all steps.

2) The analysis may take longer than one session. Using the tree, you can save your work
and pick up where you started.

3) You might want to share your steps with a colleague or in a publication.

How to save an analysis tree?

FlexiConc lets you save a tree to a JSON file, which you can store on your computer:

1. Go back to the analysis tree view
2. Click on save to file.
3. Name your tree example.json
4. Save it in a location where you’ll be able to find it again!
5. When you need it, you can load the file back in.

 Page 7 of 7

The handout was created by the “Reading Concordances in the 21st Century” research project funded by the Arts and Humanities Research Council (AHRC) (grant
references: AH/X002047/1 & AH/X002047/2) and the Deutsche Forschungsgemeinschaft (DFG) (grant reference: 508235423).
This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 © 2025 Nathan Dykes, Stephanie Evert, Michaela Mahlberg, Alexander Piperski

Appendix: Subsets in CLiC

The texts in CLiC are marked up to distinguish between text within
quotation marks, referred as ‘quotes’ and text outside of quotation marks,
referred to as non-quotes. ‘Long suspensions’ are a specific type of non-
quotes that appear with quotes on either side in the same sentence. Long
suspensions contain five or more words. Short suspensions contain up to
four words. In CLiC, in the full text view, you can choose to highlight such
‘subsets’. For studies that show implications of looking at texts in terms of
subsets see e.g. Egbert & Mahlberg (2020), Chou, I. & Liu, K. (2023).

References
Chou, I. & Liu, K. (2023). Style in speech and narration of two English translations of Hongloumeng A

corpus-based multidimensional study, Target, online
Egbert, J. & Mahlberg, M. (2020). Fiction – one register or two? Speech and narration in novels.

Register Studies, 2(1), 72-101.
Mahlberg, M., Stockwell, P., Wiegand, V. and Lentin, J. (2020a) CLiC 2.1. Corpus Linguistics in

Context, available at: clic-fiction.com
Mahlberg, M., Wiegand, V., & Hennessey, A. (2020b). Eye language–body part collocations and

textual contexts in the nineteenth-century novel. Phraséologie et stylistique de la langue
littéraire/Phraseology and stylistics of literary language. Approches
interdisciplinaires/Interdisciplinary approaches. Berlin: Peter Lang, 143-176.

O'Donnell, M. B. (2008). KWICgrouper–Designing a tool for corpus-driven concordance
analysis. International Journal of English Studies, 8(1), 107-122.

Reimers, Nils, and Iryna Gurevych. "Sentence-bert: Sentence embeddings using siamese bert-
networks." arXiv preprint arXiv:1908.10084 (2019).

